首页> 美国政府科技报告 >Effects of Inert Dust Clouds on the Extinction of Strained, Laminar Flames at Normal and Micro Gravity
【24h】

Effects of Inert Dust Clouds on the Extinction of Strained, Laminar Flames at Normal and Micro Gravity

机译:惰性尘云对正常和微重力条件下应变层流火焰消光的影响

获取原文

摘要

A combined experimental and detailed numerical study was conducted on the interaction between chemically inert solid particles and strained, atmospheric methane/air and propane/air laminar flames, both premixed and non-premixed. Experimentally, the opposed jet configuration was used with the addition of a particle seeder capable of operating in conditions of varying gravity. The particle seeding system was calibrated under both normal and micro gravity and a noticeable gravitational effect was observed. Flame extinction experiments were conducted at normal gravity by seeding inert particles at various number densities and sizes into the reacting gas phase. Experimental data were taken for 20 and 37 (mu) nickel alloy and 25 and 60 (mu) aluminum oxide particles. The experiments were simulated by solving along the stagnation streamline the conservation equations of mass, momentum, energy, and species conservation for both phases, with detailed descriptions of chemical kinetics, molecular transport, and thermal radiation. The experimental data were compared with numerical simulations, and insight was provided into the effects on extinction of the fuel type, equivalence ratio, flame configuration, strain rate. particle type. particle size. particle mass, delivery rate. the orientation of particle injection with respect to the flame and gravity. It was found that for the same injected solid mass, larger particles can result in more effective flame cooling compared to smaller particles, despite the fact that equivalent masses of the larger particles have smaller total surface area to volume ratio. This counter-intuitive finding resulted from the fact that the heat exchange between the two phases is controlled by the synergistic effect of the total contact area and the temperature difference between the two phases. Results also demonstrate that meaningful scaling of interactions between the two phases may not be possible due to the complexity of the couplings between the dynamic and thermal parameters of the problem.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号