首页> 外文学位 >Effects of preheated combustion air on laminar coflow diffusion flames under normal and microgravity conditions.
【24h】

Effects of preheated combustion air on laminar coflow diffusion flames under normal and microgravity conditions.

机译:在正常和微重力条件下,预热的燃烧空气对层流同流扩散火焰的影响。

获取原文
获取原文并翻译 | 示例

摘要

Global energy consumption has been increasing around the world, owing to the rapid growth of industrialization and improvements in the standard of living. As a result, more carbon dioxide and nitrogen oxide are being released into the environment. Therefore, techniques for achieving combustion at reduced carbon dioxide and nitric oxide emission levels have drawn increased attention. Combustion with a highly preheated air and low-oxygen concentration has been shown to provide significant energy savings, reduce pollution and equipment size, and uniform thermal characteristics within the combustion chamber. However, the fundamental understanding of this technique is limited.; The motivation of the present study is to identify the effects of preheated combustion air on laminar coflow diffusion flames. Combustion characteristics of laminar coflow diffusion flames are evaluated for the effects of preheated combustion air temperature under normal and low-gravity conditions. Experimental measurements are conducted using direct flame photography, particle image velocimetry (PIV) and optical emission spectroscopy diagnostics. Laminar coflow diffusion flames are examined under four experimental conditions: normal-temperature/normal-gravity (case I), preheated-temperature/normal gravity (case II), normal-temperature/low-gravity (case III), and preheated-temperature/low-gravity (case IV). Comparisons between these four cases yield significant insights.; In our studies, increasing the combustion air temperature by 400 K (from 300 K to 700 K), causes a 37.1% reduction in the flame length and about a 25% increase in peak flame temperature. The results also show that a 400 K increase in the preheated air temperature increases CH concentration of the flame by about 83.3% (CH is a marker for the rate of chemical reaction), and also increases the C2 concentration by about 60% (C2 is a marker for the soot precursor). It can therefore be concluded that preheating the combustion air increases the energy release intensity, flame temperature, C2 concentration, and, presumably, NOx production.; Our work is the first to consider preheated temperature/low-gravity combustion. The results of our experiments reveal new insights. Where as increasing the temperature of the combustion air reduces the laminar flame width under normal gravity, we find that, in a low-gravity environment, increasing the combustion air temperature causes a significant increase in the flame width.
机译:由于工业化的快速发展和生活水平的提高,全球能源消耗在世界范围内一直在增加。结果,更多的二氧化碳和氮氧化物被释放到环境中。因此,在降低的二氧化碳和一氧化氮排放水平下实现燃烧的技术引起了越来越多的关注。事实证明,与高度预热的空气和低氧气浓度的燃烧可显着节省能源,减少污染和设备尺寸,并在燃烧室内形成均匀的热特性。但是,对该技术的基本理解是有限的。本研究的目的是确定预热的燃烧空气对层流同流扩散火焰的影响。评估层流共流扩散火焰的燃烧特性,以评估在正常和低重力条件下预热的燃烧空气温度的影响。使用直接火焰摄影,粒子图像测速(PIV)和光发射光谱诊断法进行实验测量。在以下四个实验条件下检查层流共流扩散火焰:常温/正常重力(情况I),预热/正常重力(情况II),常温/低重力(情况III)和预热温度/低重力(情况IV)。这四个案例之间的比较产生了重要的见解。在我们的研究中,将燃烧空气温度提高400 K(从300 K到700 K)会导致火焰长度减少37.1%,峰值火焰温度增加约25%。结果还显示,预热空气温度升高400 K,火焰的CH浓度增加约83.3%(CH是化学反应速率的标志),C2浓度也增加约60%(C2为烟灰前体的标记)。因此可以得出结论,对燃烧空气进行预热会增加能量释放强度,火焰温度,C2浓度,并可能会增加NOx的产生。我们的工作是第一个考虑预热温度/低重力燃烧的工作。我们的实验结果揭示了新的见解。在正常重力下,随着燃烧空气温度的升高,层流火焰宽度减小,我们发现,在低重力环境中,燃烧空气温度升高会导致火焰宽度显着增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号