首页> 美国政府科技报告 >Influence of Microgravity on Arterial Baroreflex Responses Triggered by Valsalva's Maneuver
【24h】

Influence of Microgravity on Arterial Baroreflex Responses Triggered by Valsalva's Maneuver

机译:微重力对Valsalva机动引起的动脉压力反射的影响

获取原文

摘要

When astronauts return to Earth and stand upright, their heart rates may speed inordinately, their blood pressures may fall, and some returning astronauts may even faint. Since physiological adjustments to standing are mediated importantly by pressure-regulating reflexes (baroreflexes), we studied involuntary (or autonomic) nerve and blood pressure responses of astronauts to four, 15-second periods of 15- and 30-mmHg straining (Valsalva'.(approximately) maneuver). We measured the electrocardiogram, finger blood pressure, respiration, and muscle sympathetic nerve activity in four healthy male astronauts before and during the 16-day Neurolab Space Shuttle mission. We found that although microgravity provoked major autonomic changes, no astronaut experienced fainting symptoms after the mission. Blood pressure fell more during straining in space than on Earth (the average reduction of systolic pressure with 30-mmHg straining was 49 mmHg during and 27 mmHg before the mission). However, the increases of muscle sympathetic nerve activity that were triggered by straining were also larger in space than on Earth. As a result, the gain of the sympathetic baroreflex, taken as the total sympathetic nerve response divided by the maximum pressure reduction during straining, was the same in space as on Earth. In contrast, heart rate changes, which are mediated by changes of vagus nerve activity, were smaller in space. This and earlier research suggest that exposure to microgravity augments blood pressure and sympathetic adjustments to Valsalva straining and differentially reduces vagal, but not sympathetic baroreflex responsiveness. The changes that we documented can be explained economically as a consequence of the blood volume reduction that occurs in space.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号