首页> 美国政府科技报告 >Overcoming Geometry-Induced Stiffness with IMplicit-Explicit (IMEX) Runge-Kutta Algorithms on Unstructured Grids with Applications to CEM, CFD, and CAA
【24h】

Overcoming Geometry-Induced Stiffness with IMplicit-Explicit (IMEX) Runge-Kutta Algorithms on Unstructured Grids with Applications to CEM, CFD, and CAA

机译:用非显微网格上的显式显式(ImEX)Runge-Kutta算法克服几何诱导的刚度,并应用于CEm,CFD和Caa

获取原文

摘要

My goal is to develop and implement efficient, accurate, and robust Implicit-Explicit Runge-Kutta (IMEX RK) methods (9) for overcoming geometry-induced stiffness with applications to computational electromagnetics (CEM), computational fluid dynamics (CFD) and computational aeroacoustics (CAA). IMEX algorithms solve the non-stiff portions of the domain using explicit methods, and isolate and solve the more expensive stiff portions using implicit methods. Current algorithms in CEM can only simulate purely harmonic (up to lOGHz plane wave) EM scattering by fighter aircraft, which are assumed to be pure metallic shells, and cannot handle the inclusion of coatings, penetration into and radiation out of the aircraft. Efficient MEX RK methods could potentially increase current CEM capabilities by 1-2 orders of magnitude, allowing scientists and engineers to attack more challenging and realistic problems.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号