首页> 美国政府科技报告 >Effect at High Subsonic Speeds of Fuselage Forebody Strakes on the Static Stability and Vertical-Tail-Load Characteristics of a Complete Model Having a Delta Wing
【24h】

Effect at High Subsonic Speeds of Fuselage Forebody Strakes on the Static Stability and Vertical-Tail-Load Characteristics of a Complete Model Having a Delta Wing

机译:机身前叶片高亚音速速度对三角翼完整模型静态稳定性和垂直尾荷载特性的影响

获取原文

摘要

A wind-tunnel investigation at high subsonic speeds has been conducted to determine the effect of fuselage forebody strakes on the static stability and the vertical-tail-load characteristics of an airplane-type configuration having a delta wing. The tests were made at Mach numbers from 0.60 to 0.92 corresponding to Reynolds numbers from 3.0 x 10(exp 6) to 4.2 x 10(exp 6), based on the wing mean aerodynamic chord, and at angles of attack from approximately -2 to 24 deg. The strakes provided improvements in the directional stability characteristics of the wing-fuselage configuration which were reflected in the characteristics of the complete configuration in the angle-of-attack range where extreme losses in directional stability quite often occur. It was also found that the strakes, through their beneficial effect on the wing-fuselage directional stability, reduced the vertical-tail load per unit restoring moment at high angles of attack. The results also indicated that, despite the inherent tendency for strakes to produce a pitch-up, acceptable pitching-moment characteristics can be obtained provided the strakes are properly chosen and used in conjunction with a wing-body-tail configuration characterized by increasing stability with increasing lift.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号