首页> 外文期刊>Ocean Engineering >Computational analysis of static height stability and aerodynamics of vehicles with a fuselage, wing and tail in ground effect
【24h】

Computational analysis of static height stability and aerodynamics of vehicles with a fuselage, wing and tail in ground effect

机译:具有地面,机翼和机尾的车辆的静态高度稳定性和空气动力学的计算分析

获取原文
获取原文并翻译 | 示例
           

摘要

Wing-in-ground (WIG) effect vehicles skim the surface of the ground or water using an air cushion between the vehicle and the surface. The lift augmentation and drag reduction are considerable compared to an airplane flying out of ground effect and significantly enhance the aerodynamic performance. However, the stability problem is still a challenge for researchers and designers of WIG effect vehicles. In a previous study, sectional shapes were optimized for the wing-in-round effect (WIG) using computational fluid dynamics (CFD) and multi-objective optimization with two objectives: the aerodynamic center of height, which is part of the static height stability, and the lift-to-drag ratio. The optimization study obtained 113 optimal solutions called Pareto optima or Pareto sets, which include various airfoil profiles such as a flat lower surface and a convex lower surface next to the trailing edge. In this study, some of the Pareto optima that show the characteristics of features in the design domain are selected, and are applied to a three-dimensional vehicle with a fuselage, lifting and control surfaces such as a horizontal tail. Three featured optima that show high stability, high performance, and relatively stable cases are carefully investigated using computational methods to analyze the aerodynamic characteristics, stability, and three-dimensional effects.
机译:地面对翼(WIG)效应车辆使用车辆与地面之间的气垫在地面或水上掠过。与飞机飞离地面的效果相比,升力的增加和阻力的减小是相当可观的,并且大大提高了空气动力学性能。但是,稳定性问题仍然是WIG效应车辆研究人员和设计人员面临的挑战。在先前的研究中,使用计算流体动力学(CFD)和具有两个目标的多目标优化对截面形状进行了优化,以实现机翼对翼效应(WIG):空气动力学高度中心,它是静态高度稳定性的一部分,以及提升/拖动比。优化研究获得了113个最优解,称为帕累托最优或帕累托集,其中包括各种翼型轮廓,例如平坦的下表面和紧随后缘的凸形下表面。在这项研究中,选择了一些在设计域中显示特征特征的帕累托最优,并将其应用于带有机身,举升和控制表面(如水平尾翼)的三维车辆。使用计算方法对空气动力学特性,稳定性和三维效果进行分析,仔细研究了三个具有最佳稳定性,高性能和相对稳定性的最优方案。

著录项

  • 来源
    《Ocean Engineering》 |2018年第15期|12-22|共11页
  • 作者

    Lee Juhee;

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号