首页> 美国政府科技报告 >Role of Nanopores on U(VI) Sorption and Redox Behavior in U(VI)-Contaminated Subsurface Sediments.
【24h】

Role of Nanopores on U(VI) Sorption and Redox Behavior in U(VI)-Contaminated Subsurface Sediments.

机译:纳米孔对U(VI) - 被污染地下沉积物中U(VI)吸附和氧化还原行为的作用。

获取原文

摘要

Most reactive surfaces in clay-dominated sediments are present within nanopores (pores of nm dimension). The behavior of geological fluids and minerals in nanopores is significantly different from those in normal non-nanoporous environments. The effect of nanopore surfaces on U(VI) sorption/desorption and reduction is likely to be significant in clay-rich subsurface environments. Our research results from both model nanopore system and natural sediments from both model system (synthetic nanopore alumina) and sediments from the ORNL Field Research Center prove that U(VI) sorption on nanopore surfaces can be greatly enhanced by nanopore confinement environments. The results from the project provide advanced mechanistic, quantitative information on the physiochemical controls on uranium sorption and redox behavior in subsurface sediments. The influence of nanopore surfaces on coupled uranium sorption/desorption and reduction processes is significant in virtually all subsurface environments, because most reactive surfaces are in fact nanopore surfaces. The results will enhance transfer of our laboratory-based research to a major field research initiative where reductive uranium immobilization is being investigated. Our results will also provide the basic science for developing in-situ colloidal barrier of nanoporous alumina in support of environmental remediation and long term stewardship of DOE sites.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号