首页> 美国政府科技报告 >Enhanced/Synthetic Vision and Head-Worn Display Technologies for Terminal Maneuvering Area NextGen Operations
【24h】

Enhanced/Synthetic Vision and Head-Worn Display Technologies for Terminal Maneuvering Area NextGen Operations

机译:用于终端机动区NextGen操作的增强/合成视觉和头戴式显示技术

获取原文

摘要

NASA is researching innovative technologies for the Next Generation Air Transportation System (NextGen) to provide a "Better-Than-Visual" (BTV) capability as adjunct to "Equivalent Visual Operations" (EVO); that is, airport throughputs equivalent to that normally achieved during Visual Flight Rules (VFR) operations rates with equivalent and better safety in all weather and visibility conditions including Instrument Meteorological Conditions (IMC). These new technologies build on proven flight deck systems and leverage synthetic and enhanced vision systems. Two piloted simulation studies were conducted to access the use of a Head-Worn Display (HWD) with head tracking for synthetic and enhanced vision systems concepts. The first experiment evaluated the use a HWD for equivalent visual operations to San Francisco International Airport (airport identifier: KSFO) compared to a visual concept and a head-down display concept. A second experiment evaluated symbology variations under different visibility conditions using a HWD during taxi operations at Chicago O'Hare airport (airport identifier: KORD). Two experiments were conducted, one in a simulated San Francisco airport (KSFO) approach operation and the other, in simulated Chicago O'Hare surface operations, evaluating enhanced/synthetic vision and head-worn display technologies for NextGen operations. While flying a closely-spaced parallel approach to KSFO, pilots rated the HWD, under low-visibility conditions, equivalent to the out-the-window condition, under unlimited visibility, in terms of situational awareness (SA) and mental workload compared to a head-down enhanced vision system. There were no differences between the 3 display concepts in terms of traffic spacing and distance and the pilot decision-making to land or go-around. For the KORD experiment, the visibility condition was not a factor in pilot's rating of clutter effects from symbology. Several concepts for enhanced implementations of an unlimited field-of-regard BTV concept for low-visibility surface operations were determined to be equivalent in pilot ratings of efficacy and usability.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号