首页> 美国政府科技报告 >Theoretical studies of pentene cracking on zeolites: C-C beta-scission processes
【24h】

Theoretical studies of pentene cracking on zeolites: C-C beta-scission processes

机译:戊烷裂解沸石的理论研究:C-Cβ-断裂过程

获取原文

摘要

The nature of the molecular species involved in the cracking of hydrocarbons into smaller fragments over zeolite catalysts has been studied extensively, as the advent of zeolites such as faujasite to carry out these transformations more selectively has revolutionized the petroleum refining technology. While the nature of the acid-catalyzed process involving proposed carbocationic species has been proposed for nearly fifty years, there have been extensive studies involving heterogeneous processes and analogs with solution superacid chemistry to elucidate these mechanisms more clearly and to attempt to detect the intermediates involved in these reactions. Also in recent years there have been an increasing number of theoretical studies on the nature of the acid sites in zeolites, the interactions of these acid sites with adsorbates including hydrocarbons, and on simple reactions of hydrocarbon species using model systems to represent the zeolite. In this study the authors report the results of ab initio and density functional studies on one aspect-- the beta-scission C-C bond-breaking step--that arises in the cracking process of alkanes and alkenes. The authors focus on the species arising from pentene adsorption on an acid site and the subsequent cracking of this C(sub 5) species as an illustration of the carbon-carbon bond-breaking step. In these studies they employ a simple three-T-site to represent the immediate vicinity of the acid site in faujasite comprised of the Si-O-Al-OH-O-Si skeleton with the unsatisfied bonds terminated by hydrogens. They study the reaction of the 2- pentyl cation undergoing beta-scission in the gas phase to form propene and the ethyl cation and the corresponding reaction on the zeolite cluster. The structures of the reactants, products and transition states are determined using ab initio electronic structure techniques.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号