首页> 美国政府科技报告 >Role of Dielectric Continuum Models in Electron Transfer: Theoretical and Computational Aspects
【24h】

Role of Dielectric Continuum Models in Electron Transfer: Theoretical and Computational Aspects

机译:介电连续介质模型在电子转移中的作用:理论和计算方面

获取原文

摘要

Condensed phase physical and chemical processes generally involve interactions covering a wide range of distance scales, from short-range molecular interactions requiring orbital overlap to long-range coulombic interaction between local sites of excess charge (positive or negative monopoles). Intermediate-range distances pertain to higher-order multipolar as well as inductive and dispersion interactions. Efforts to model such condensed phase phenomena typically involve a multi-tiered strategy in which quantum mechanics is employed for full electronic structural characterization of a site of primary interest (e.g., a molecular solute or cluster), while more remote sites are treated at various classical limits (e.g., a molecular force field for discrete solvent molecules or a dielectric continuum (DC) model, if the solute is charged or has permanent multipole moments). In particular, DC models have been immensely valuable in modeling chemical reactivity and spectroscopy in media of variable polarity. Simple DC models account qualitatively for many important trends in the solvent dependence of reaction free energies, activation free energies, and optical excitation energies, and many results of semiquantitative or fully quantitative significance in comparison with experiment have been obtained, especially when detailed quantum chemical treatment of the solute is combined self consistently with DC treatment of the solvent (e.g., as in the currently popular PCM (polarized continuum model) approaches).

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号