首页> 美国政府科技报告 >Phase Transformations in Nickel-Aluminum Alloys During Ion Beam Mixing
【24h】

Phase Transformations in Nickel-Aluminum Alloys During Ion Beam Mixing

机译:离子束混合过程中镍铝合金的相变

获取原文

摘要

The effect of ion beam mixing of nickel-aluminum alloys with 500 keV krypton ions has been investigated over a range of temperature, composition, ion dose, and post-irradiation thermal treatments. Samples were formed by alternate evaporation of layers of aluminum and nickel. A portion of these samples was subsequently annealed to form intermetallic compounds. Irradiations were performed at both room temperature and 80 deg K using the 2MV ion accelerator at Argonne National Laboratory. Phase transformations were observed during both in situ irradiations in the High Voltage Electron Microscope (HVEM) at Argonne, and also in subsequent analysis of an array of irradiated samples. Electron diffraction indicates the presence of metastable crystalline structures not present in the conventional nickel-aluminum phase diagram. Transformations occur at doses as low as 5 x 10 exp 14 cm exp -2 and continue to develop as the irradiation progresses up to 2 x 10 exp 16 cm exp -2 . Layer mixing is followed through Rutherford Backscattering analysis. Samples are also checked with x-rays and Electron Energy Loss Spectroscopy (EELS). A thermodynamic argument is presented to explain the phase transformations in terms of movements on a free energy diagram. This analysis explains the interesting paradox concerning the radiation hardness of the NiAl phase and the amorphous structure of mixed Ni-50% Al layers. (ERA citation 11:020254)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号