首页> 美国政府科技报告 >Application of the Finite Element Method to the Scattering of a Two-Dimensional, Semi-Infinite Periodic Structure
【24h】

Application of the Finite Element Method to the Scattering of a Two-Dimensional, Semi-Infinite Periodic Structure

机译:有限元法在二维半无限周期结构散射中的应用

获取原文

摘要

Infinite periodic structures have been studied heavily because of their efficient filtering capabilities. They generally exhibit sharp frequency roll-offs at the frequency band of interest. In the RF region of the electromagnetic spectrum, periodic structures find applications such as radomes and photonic bandgap materials. Most studies have been done with infinitely periodic arrays because it is convenient to collapse an infinite array into one representative period using Floquet Analysis. This thesis formulates a Finite Element Method (FEM) solution of a semi-infinite periodic array consisting of infinite cylinders. The array elements sufficiently far from the edge are implemented using the concept of a Physical Basis Function (PBF). The PBF concept is based on an a priori knowledge that the amplitudes of the currents in the periodic elements that are sufficiently far from an edge are constant. Implementation of the PBF concept allows the solution domain of the FEM to be bounded by introducing a periodic boundary that represents the truncated portion of the periodic array. The periodic boundary is implemented by relating the fields there with a Floquet phase factor based on one periodic element external to the FEM domain. Performance of the periodic boundary at normal incidence is promising. At off-normal incidence, the implemented boundary performs poorly. Implementation of a periodic boundary by relating the fields there with a Floquet phase factor with one interior periodic element is the next stage in improving off-normal incidence performance.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号