首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Convergence of an adaptive finite element DtN method for the elastic wave scattering by periodic structures
【24h】

Convergence of an adaptive finite element DtN method for the elastic wave scattering by periodic structures

机译:周期性结构散射弹性波的自适应有限元DtN方法的收敛性

获取原文
获取原文并翻译 | 示例

摘要

Consider the scattering of a time-harmonic elastic plane wave by a periodic rigid surface. The elastic wave propagation is governed by the two-dimensional Navier equation. Based on a Dirichlet-to-Neumann (DtN) map, a transparent boundary condition (TBC) is introduced to reduce the scattering problem into a boundary value problem in a bounded domain. By using the finite element method, the discrete problem is considered, where the TBC is replaced by the truncated DtN map. A new duality argument is developed to derive the a posteriori error estimate, which contains both the finite element approximation error and the DtN truncation error. An a posteriori error estimate based adaptive finite element algorithm is developed to solve the elastic surface scattering problem. Numerical experiments are presented to demonstrate the effectiveness of the proposed method. (C) 2019 Elsevier B.V. All rights reserved.
机译:考虑周期性刚性表面对时谐弹性平面波的散射。弹性波的传播受二维Navier方程控制。基于Dirichlet-to-Neumann(DtN)映射,引入了透明边界条件(TBC),以将散射问题减少为有界域中的边值问题。通过使用有限元方法,考虑了离散问题,其中TBC被截断的DtN映射代替。开发了一个新的对偶性参数来导出后验误差估计,该估计既包含有限元近似误差又包含DtN截断误差。为了解决弹性表面散射问题,提出了一种基于后验误差估计的自适应有限元算法。数值实验表明了该方法的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号