首页> 美国政府科技报告 >Quadric-Based Polygonal Surface Simplification
【24h】

Quadric-Based Polygonal Surface Simplification

机译:基于二次曲面的多边形表面简化

获取原文

摘要

Many applications in computer graphics and related fields can benefit from automatic simplification of complex polygonal surface models. Applications are often confronted with either very densely over-sampled surfaces or models too complex for the limited available hardware capacity. An effective algorithm for rapidly producing high-quality approximations of the original model is a valuable tool for managing data complexity. In this dissertation, I present my simplification algorithm, based on iterative vertex pair contraction. This technique provides an effective compromise between the fastest algorithms, which often produce poor quality results, and the highest-quality algorithms, which are generally very slow. For example, a 1000 face approximation of a 100,000 face model can be produced in about 10 seconds on a PentiumPro 200. The algorithm can simplify both the geometry and topology of manifold as well as non-manifold surfaces. In addition to producing single approximations, my algorithm can also be used to generate multiresolution representations such as progressive meshes and vertex hierarchies for view-dependent refinement. The foundation of my simplification algorithm, is the quadric error metric which I have developed. It provides a useful and economical characterization of local surface shape, and I have proven a direct mathematical connection between the quadric metric and surface curvature. A generalized form of this metric can accommodate surfaces with material properties, such as RGB color or texture coordinates. I have also developed a closely related technique for constructing a hierarchy of well-defined surface regions composed of disjoint sets of faces. This algorithm involves applying a dual form of my simplification algorithm to the dual graph of the input surface. The resulting structure is a hierarchy of face clusters which is an effective multiresolution representation for applications such as radiosity.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号