首页> 美国政府科技报告 >Fully Automated Sunspot Detection and Classification Using SDO HMI Imagery in MATLAB
【24h】

Fully Automated Sunspot Detection and Classification Using SDO HMI Imagery in MATLAB

机译:在maTLaB中使用sDO HmI图像进行全自动太阳黑子检测和分类

获取原文

摘要

An automatic sunspot detection and classification method is developed combining HMII and HMIM imagery procured from the Solar Dynamics Observatory. Iterative global thresholding methods are employed for detecting sunspots. Groups are selected based on heliographic distance between sunspots via area-based grouping lengths. Classifications are applied through logical operators adhering to the standard McIntosh classification system. Calculated sunspot parameters and classifications are validated in three way comparisons between code output, Holloman AFB and the Space Weather Prediction Center. Accuracy is achieved within the margin of difference between Holloman and SWPC reports for sunspot area, number of groups, number of spots, and McIntosh classification using data spanning 6 July 2012 to 29 June 2013: SWPC/Holloman (33.38%,57.48%,87.67%), SWPC/SDO (20.22%,51.25%,83.80%), and SDO/Holloman (24.54%,50.91%,80.65%). The automatic classification system is used to evaluate bias inherent in Holloman classification methods. Parameters are altered to reach optimal match percentages with Holloman, indicating differences between computed parameter values and hand-calculated counterparts. Group length cutoffs are shown to differ by 2.5 deg, eccentricity is quantified at 0.8, and penumbra length cutoffs are shown to exceed differences of 1.4 deg from McIntosh values.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号