首页> 美国政府科技报告 >Traveling Salesman Problem for Surveillance Mission Using Particle Swarm Optimization
【24h】

Traveling Salesman Problem for Surveillance Mission Using Particle Swarm Optimization

机译:利用粒子群优化算法监测任务的旅行商问题

获取原文

摘要

The surveillance mission requires aircraft to fly from a starting point through defended terrain to targets and return to a safe destination (usually the starting point). The process of selecting such a flight path is known as the Mission Route Planning (MRP) Problem and is a three-dimensional, multi-criteria (fuel expenditure, time required, risk taken, priority targeting, goals met, etc.) path search. Planning aircraft routes involves an elaborate search through numerous possibilities, which can severely task the resources of the system being used to compute the routes. Operational systems can take up to a day to arrive at a solution due to the combinatoric nature of the problem. This delay is not acceptable because timeliness of obtaining surveillance information is critical in many surveillance missions. Also, the information that the software uses to solve the MRP may become invalid during computation. An effective and efficient way of solving the MRP with multiple aircraft and multiple targets is desired. One approach to finding solutions is to simplify and view the problem as a two-dimensional, minimum path problem. This approach also minimizes fuel expenditure, time required, and even risk taken. The simplified problem is then the Traveling Salesman Problem (TSP).

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号