首页> 美国政府科技报告 >Selectivity of Polypeptide Binding to Nanoscale Substrates.
【24h】

Selectivity of Polypeptide Binding to Nanoscale Substrates.

机译:多肽与纳米级基底结合的选择性。

获取原文

摘要

We present new computational methodology for designing polymers, such as polypeptides and polyelectrolytes, which can selectively recognize nanostructured substrates. The methodology applies to polymers which might be used to: control placement and assembly for electronic devices, template structure during materials synthesis, as well as add new biological and chemical functionality to surfaces. Optimization of the polymer configurational sequence permits enhancement of both binding energy on and binding selectivity between one or more atomistic surfaces. A novel Continuous Rotational Isomeric State (CRIS) method permits continuous backbone torsion sampling and is seen to be critical in binding optimization problems where chain flexibility is important. We illustrate selective polypeptide binding between either analytic, uniformly charged surfaces or atomistic GaAs(100), GaAs(110) and GaAs(111) surfaces. Computational results compare very favorably with prior experimental phage display observations S.R. Whaley et al., Nature, 405, 665 (2000) for GaAs substrates. Further investigation indicates that chain flexibility is important to exhibit selective binding between surfaces of similar charge density. Such chains begin with sequences which repel the surfaces, continue with sequences that attract the surface and end with sequences that neither attract nor repel strongly.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号