首页> 美国政府科技报告 >Named Entity Recognition as a House of Cards: Classifier Stacking
【24h】

Named Entity Recognition as a House of Cards: Classifier Stacking

机译:命名实体识别作为纸牌屋:分类器堆叠

获取原文

摘要

This paper presents a classifier stacking-based approach to the named entity recognition task (NER henceforth). Transformation-based learning (Brill, 1995), Snow (sparse network of winnows (Mu oz et al., 1999)) and a forward-backward algorithm are stacked (the output of one classifier is passed as input to the next classifier), yielding considerable improvement in performance. In addition, in agreement with other studies on the same problem, the enhancement of the feature space (in the form of capitalization information) is shown to be especially beneficial to this task.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号