首页> 美国政府科技报告 >Numerical Simulation of the Disturbed Flow Through a Three-Dimensional Building Array
【24h】

Numerical Simulation of the Disturbed Flow Through a Three-Dimensional Building Array

机译:三维建筑阵列扰动流动的数值模拟

获取原文

摘要

A study of the neutrally-stratified flow within and over an array of three-dimensional (3-D) buildings (cubes) was undertaken using simple Reynolds- averaged Navier-Stokes (RANS) flow models. These models consist of a general solution of the ensemble-averaged, steady-state, three-dimensional Navier-Stokes equations, where the k-E turbulence model (k is turbulence kinetic energy and E is viscous dissipation rate) has been used to close the system of equations. Two turbulence closure models were tested; namely, the standard and Kato-Launder k-E models. The latter model is a modified k-E model designed specifically to overcome the stagnation point anomaly in flows past a bluff body where the standard k-E model overpredicts the production of turbulence kinetic energy near the stagnation point. Results of a detailed comparison between a wind tunnel experiment and the RANS flow model predictions are presented. More specifically, vertical profiles of the predicted mean streamwise velocity, mean vertical velocity, and turbulence kinetic energy at a number of streamwise locations that extend from the impingement zone upstream of the array, through the array interior, to the exit region downstream of the array are presented and compared to those measured in the wind tunnel experiment. Generally, the numerical predictions show good agreement for the mean flow velocities. The turbulence kinetic energy was underestimated by the two different closure models. After validation, the results of the high-resolution RANS flow model predictions were used to diagnose the dispersive stress, within and above the building array. The importance of dispersive stresses, which arise from point-to-point variations in the mean flow field, relative to the spatially-averaged Reynolds stresses are assessed for the building array.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号