首页> 美国政府科技报告 >Communication-Driven Codesign for Multiprocessor Systems
【24h】

Communication-Driven Codesign for Multiprocessor Systems

机译:多处理器系统的通信驱动代码签名

获取原文

摘要

Several trends in technology have important implications for embedded systems of the future. One trend is the increasing density and number of transistors that can be placed on a chip. This allows designers to fit more functionality into smaller devices, and to place multiple processing cores on a single chip. Another trend is the increasing emphasis on low power designs. A third trend is the appearance of bottlenecks in embedded system designs due to the limitations of long electrical interconnects, and increasing use of optical interconnects to overcome these bottlenecks. These trends lead to rapidly increasing complexity in the design process, and the necessity to develop tools that automate the process. This thesis will present techniques and algorithms for developing such tools. Automated techniques are especially important for multiprocessor designs. Programming such systems is difficult, and this is one reason why they are not as prevalent today. In this thesis we explore techniques for automating and optimizing the process of mapping applications onto system architectures containing multiple processors. We examine different processor interconnection methods and topologies, and the design implications of different levels of connectivity between the processors. Using optics, it is practical to construct processor interconnections having arbitrary topologies. This can offer advantages over regular interconnection topologies. However, existing scheduling techniques do not work in general for such arbitrarily connected systems. We present an algorithm that can be used to supplement existing scheduling techniques to enable their use with arbitrary interconnection patterns. We use our scheduling techniques to explore the larger problem of synthesizing an optimal interconnection network for a problem or group of problems.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号