首页> 美国政府科技报告 >Fault-Tolerant Parallel Algorithms for Adaptive Matched-Field Processing on Distributed Array Systems
【24h】

Fault-Tolerant Parallel Algorithms for Adaptive Matched-Field Processing on Distributed Array Systems

机译:分布式阵列系统自适应匹配场处理的容错并行算法

获取原文

摘要

Continuous innovations in adaptive matched-field processing (MFP) algorithms have presented significant increases in computational complexity and resource requirements that make development and use of advanced parallel processing techniques imperative. In real-time sonar systems operating in severe underwater environments, there is a high likelihood of some part of systems exhibiting defective behavior, resulting in loss of critical network, processor, and sensor elements, and degradation in beam power pattern. Such real-time sonar systems require high reliability to overcome these challenging problems. In this paper, efficient fault-tolerant parallel algorithms based on coarse-grained domain decomposition methods are developed in order to meet real- time and reliability requirements on distributed array systems in the presence of processor and sensor element failures. The performance of the fault-tolerant parallel algorithms is experimentally analyzed in terms of beamforming performance, computation time, speedup, and parallel efficiency on a distributed testbed. The performance results demonstrate that these fault- tolerant parallel algorithms can provide real-time, scalable, lightweight, and fault-tolerant implementations for adaptive MFP algorithms on distributed array systems.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号