首页> 美国政府科技报告 >Controlling Non-Catalytic Decomposition of High Concentration Hydrogen Peroxide
【24h】

Controlling Non-Catalytic Decomposition of High Concentration Hydrogen Peroxide

机译:控制高浓度过氧化氢的非催化分解

获取原文

摘要

Hydrogen peroxide (H2O2) is a strong oxidizing agent. High concentration H2O2 or High Test Peroxide (HTP) has been used extensively in the past in propulsion applications as mono and bipropellant. At low temperature, HTP can be catalytically decomposed to water and oxygen. Drawbacks to this approach include catalyst poisoning due to the presence of stabilizers in HTP, and susceptibility of the metal catalyst to melting because of the intense heat release. This renders the use of catalysts not only inconvenient but also quite expensive. An alternate approach for HTP decomposition is thermal, where no catalyst is required. HTP decomposition is accompanied by the production of enormous amount of heat that often leads to runaway reactions and subsequent explosion. If the rate of thermal decomposition can be controlled, the ensuing technology would prove to be a viable and inexpensive alternative to using catalysts. This technology has the potential to replace any device that decomposes H2O2 catalytically. Also, the controlled thermal decomposer can be used as an accelerator to heat any substance quickly at the expense of very low power. In order to control non-catalytic HTP decomposition, a deeper understanding of the chemical mechanism for H2O2 decomposition must be developed. The current work reports the development of detailed kinetic steps for HTP decomposition over a wide range of temperature and pressure. The resulting mechanism is then used to perform CFD simulations of a commercial HTP decomposer (patented by Pratt & Whitney) to explore safe operating conditions. A similar strategy can be applied to model COIL technology.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号