首页> 美国政府科技报告 >Gradient Flow Based Matrix Joint Diagonalization for Independent Component Analysis
【24h】

Gradient Flow Based Matrix Joint Diagonalization for Independent Component Analysis

机译:基于梯度流的矩阵联合对角化独立分量分析

获取原文

摘要

In this thesis, employing the theory of matrix Lie groups, we develop gradient based flows for the problem of Simultaneous or Joint Diagonalization (JD) of a set of symmetric matrices. This problem has applications in many fields especially in the field of Independent Component Analysis (ICA). We consider both orthogonal and non-orthogonal JD. We view the JD problem as minimization of a common quadric cost function on a matrix group. We derive gradient based flows together with suitable discretizations for minimization of this cost function on the Riemannian manifolds of O(n) and GL(n). We use the developed JD methods to introduce a new class of ICA algorithms that sphere the data, however do not restrict the subsequent search for the un-mixing matrix to orthogonal matrices. These methods provide robust ICA algorithms in Gaussian noise by making effective use of both second and higher order statistics.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号