首页> 美国政府科技报告 >Scattering from Multi-Layered Metamaterials Using Wave Matrices
【24h】

Scattering from Multi-Layered Metamaterials Using Wave Matrices

机译:利用波矩阵从多层超材料中散射

获取原文

摘要

The complex permittivity (e) and permeability (mu) of a material determine the response of the material to electromagnetic radiation. Usually, the real parts of e and mu are positive for naturally occurring materials at microwave frequencies. Metamaterials are engineered media that are designed to have either a negative permittivity or permeability or both. Negative permeability and negative permittivity would cause electromagnetic waves traveling through this medium to exhibit unusual characteristics such as power flow in a direction opposite to the phase velocity. In this thesis, the wave matrix approach is used to calculate the total reflection and transmission coefficients of a multilayered structure. The method is applicable to all types of materials, including metamaterials. Several layered configurations are studied including both metamaterial and conventional dielectric layers. A MATLAB program is developed to examine the effects of frequency, angle of incidence and polarization. The results are compared to published data. Potential applications of metamaterials are also discussed.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号