首页> 美国政府科技报告 >Influence of Mountain Waves and NAT Nucleation Mechanisms on Polar Stratospheric Cloud Formation at Local and Synoptic Scales during the 1999-2000 Arctic Winter
【24h】

Influence of Mountain Waves and NAT Nucleation Mechanisms on Polar Stratospheric Cloud Formation at Local and Synoptic Scales during the 1999-2000 Arctic Winter

机译:1999-2000北极冬季山地波和NaT成核机制对局部和天气尺度极地平流层云形成的影响

获取原文

摘要

A scheme for introducing mountain wave-induced temperature perturbations in a microphysical polar stratospheric cloud (PSC) model has been developed. A data set of temperature fluctuations attributable to mountain waves as computed by the Mountain Wave Forecast Model (MWFM-2) has been used for the study. The PSC model has variable microphysics, enabling different nucleation mechanisms for nitric acid trihydrate, NAT, to be employed. In particular, the difference between the formation of NAT and ice particles in a scenario where NAT formation is not dependent on preexisting ice particles, allowing NAT to form at temperatures above the ice frost point, T(sub ice), and a scenario where NAT nucleation is dependent on preexisting ice particles, is examined. The performance of the microphysical model in the different microphysical scenarios and a number of temperature scenarios with and without the influence of mountain waves is tested through comparisons with lidar measurements of PSCs made from the NASA DC-8 on 23 and 25 January during the SOLVE/THESEO 2000 campaign in the 1999-2000 winter and the effect of mountain waves on local PSC production is evaluated in the different microphysical scenarios. Mountain waves are seen to have a pronounced effect on the amount of ice particles formed in the simulations. Quantitative comparisons of the amount of solids seen in the observations and the amount of solids produced in the simulations show the best correspondence when NAT formation is allowed to take place at temperatures above T(sub ice). Mountain wave-induced temperature fluctuations are introduced in vortex-covering model runs, extending the full 1999-2000 winter season, and the effect of mountain waves on large-scale PSC production is estimated in the different microphysical scenarios. Regardless of the choice of microphysics, the inclusion of mountain waves increases the amount of NAT particles by as much as 10%.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号