首页> 美国政府科技报告 >Classification of Targets Using Optimized ISAR Euler Imagery
【24h】

Classification of Targets Using Optimized ISAR Euler Imagery

机译:使用优化的IsaR欧拉图像分类目标

获取原文

摘要

Various approaches exist to enable target classification through a decomposition of the polarimetric scattering matrix. Specifically, the Euler decomposition attempts to express the target scattering properties through more physically relevant parameters. Target classification in general has been limited by signature variability and the saturation of images by non-persistent scatterers. The Euler decomposition is sensitive to additional parameter ambiguities. It will be demonstrated how undesirable ambiguities may be identified and mitigated. Through the analysis of polarimetric ISAR signatures obtained in compact radar ranges at the University of Massachusetts Lowell Submillimeter Technology Laboratory and the U.S. Army National Ground Intelligence Center (NGIC), the cause of non-persistent scatters will be investigated. A proper characterization of non-persistence should lead to better optimization of the Euler decomposition, and thus improve target classification.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号