首页> 美国政府科技报告 >Improving Background Multivariate Normality and Target Detection Performance Using Spatial and Spectral Segmentation
【24h】

Improving Background Multivariate Normality and Target Detection Performance Using Spatial and Spectral Segmentation

机译:利用空间和谱分割提高背景多元正态性和目标检测性能

获取原文

摘要

Target detection in reflective hyperspectral imagery generally involves the application of a spectral matched filter on a per-pixei basis to create an image of the target likelihood of occupying each pixel. Stochastic (or unstructured) target detection techniques require the user to define an estimate of the background mean and covariance from which to separate out the desired targets in the image. Typically, scene-wide statistics are used, although it Is simple to show that this methodology does not produce sufficiently multivariate normal bachgrounds nor does it necessarily represent the best suppression of likely false alarms.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号