首页> 美国政府科技报告 >Automated Carrier Landing of an Unmanned Combat Aerial Vehicle Using Dynamic Inversion
【24h】

Automated Carrier Landing of an Unmanned Combat Aerial Vehicle Using Dynamic Inversion

机译:基于动态反演的无人作战飞行器自动着陆着陆

获取原文

摘要

Dynamic Inversion (DI) is a powerful nonlinear control technique which has been applied to several modern flight control systems. This research utilized concepts of DI in order to develop a controller to land an Unmanned Combat Aerial Vehicle (UCAV) on an aircraft carrier. The Joint Unmanned Combat Air System (J-UCAS) Equivalent Model was used as the test aircraft. An inner- loop DI controller was developed to control the pitch, roll, and yaw rate dynamics of the aircraft, while an outer-loop DI controller was developed to provide flight path commands to the inner-loop. The controller design and simulation were conducted in the MATLAB/Simulink environment. Simulations were conducted for various starting positions near the carrier and for varying wind, wind turbulence, and sea state conditions. In the absence of wind and sea state turbulence, the controller performed well. After adding wind and sea state turbulence, the controller performance was degraded. Future work in this area should include a more robust disturbance rejection technique to compensate for wind turbulence effects and a method of carrier motion prediction to compensate for sea state effects.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号