首页> 美国政府科技报告 >Modeling of the Internal Two-Phase Flow in a Gas-Centered Swirl Coaxial Fuel Injector
【24h】

Modeling of the Internal Two-Phase Flow in a Gas-Centered Swirl Coaxial Fuel Injector

机译:气体中心旋流同轴燃料喷射器内部两相流的建模

获取原文

摘要

Predicting the liquid film dynamics inside the injector cup of gas- centered swirl coaxial fuel injectors requires a general two-phase approach that is appropriate for all liquid volume fractions, high Weber number, and complex geometries. The rapid exchange of momentum at the highly convoluted interface requires tight numerical coupling between the gas and liquid phases. An Eulerian two-phase model is implemented to represent the liquid and gas interactions in the injector as well as the atomization processes at the rough interface. The model, originally proposed by Vallet et al, assumes that in the limit of infinite Reynolds and Weber number, features of the atomization process acting at large length scales are separable from small scale mechanisms. A transport equation for the liquid volume fraction represents the dispersion of the liquid into the gas via a traditional turbulent diffusion hypothesis. A model for the growth of mean interfacial surface area is then used to characterize the growth of instability at the interface, allowing a characterization of Sauter mean diameter. The model shows promise as a computationally inexpensive tool for characterizing spray quality in regions where optical experimental data are difficult to obtain and two-phase direct numerical simulation methods are too demanding.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号