首页> 美国政府科技报告 >Altitude Control of a Single Degree of Freedom Flapping Wing Micro Air Vehicle (Postprint)
【24h】

Altitude Control of a Single Degree of Freedom Flapping Wing Micro Air Vehicle (Postprint)

机译:单自由度扑翼微型飞行器(后印刷)的高度控制

获取原文

摘要

A control strategy is proposed for a minimally actuated flapping wing micro air vehicle. The Harvard RoboFly vehicle accomplished the first takeoff of an insect scale flapping wing aircraft. This flight demonstrated the capability of the aircraft to accelerate vertically while being constrained by guide-wires to avoid translation and rotation in the other five degrees of freedom. The present work proposes an altitude control scheme that would enable a similar vehicle under the same constraints to hover and track altitude commands. Using a blade element-based aerodynamic model and cycle averaging, it will be shown that altitude control of such an aircraft can be achieved. The RoboFly makes use of a single bimorph piezoelectric actuator that symmetrically varies the angular displacement of the left and right wings in the stroke plane. The wing angle-of-attack variation is passive and is a function of the instantaneous angular velocity of the wing in the stroke plane. The control law is designed to vary the frequency of the wing beat oscillations to control the longitudinal body-axis force which is used to achieve force equilibrium in hover and acceleration when tracking time-varying altitude commands.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号