首页> 美国政府科技报告 >FPGA Implementation of Robust Symmetrical Number System in High-Speed Folding Analog-to-Digital Converters
【24h】

FPGA Implementation of Robust Symmetrical Number System in High-Speed Folding Analog-to-Digital Converters

机译:高速折叠模数转换器中鲁棒对称数系统的FpGa实现

获取原文

摘要

Analog-To-Digital Converters (ADCs) are integral building blocks of most sensor and communication systems today. As the need for ADCs with faster conversion speeds and lower power dissipation increases, there is a growing motivation to reduce the number of power-consuming components by employing folding circuits to fold the input analog signal symmetrically, prior to quantization by high-speed comparators. These properties of low-power consumption, compactness, high-resolution and fast conversion speeds make folding ADCs an attractive concept to be used for defense applications, such as unmanned systems, direction-finding antenna architectures and system-on-achip applications. In this thesis, a prototype of an optical folding ADC was implemented using the Robust Symmetrical Number System (RSNS). The architecture employs a three-modulus (Moduli 7, 8, 9) scheme to preprocess the antenna signal. This thesis focuses on the simulation and hardware implementation of this ADC architecture, including the bank of comparators and the RSNS-to-Binary Conversion within a Field Programmable Gate Array (FPGA), to achieve an eight- bit Dynamic Range of 133. This is then integrated with the front-end photonics implementation (designed under a separate thesis). Low frequency analyses of the results using a 1-kHz input signal indicate a 5.39 Effective Number of Bits (ENOB), a Signal-to-Noise Ratio plus Distortion (SINAD) of 34.21 dB, and a Total Harmonic Distortion (THD) of - 61.68 dB.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号