首页> 美国政府科技报告 >Analytical Model of Nanometer Scale Viscoelastic Properties of Polymer Surfaces Measured Using an Atomic Force Microscope
【24h】

Analytical Model of Nanometer Scale Viscoelastic Properties of Polymer Surfaces Measured Using an Atomic Force Microscope

机译:用原子力显微镜测量聚合物表面纳米级粘弹性的分析模型

获取原文

摘要

The United States Air Force and the Department of Defense is increasingly interested in nanomaterials. To study these materials, one needs to measure the mechanics of materials on the nanoscale. Over the past few decades the atomic force microscope (AFM) has been used in various methods to establish local surface properties at the nanoscale. In particular, surface elasticity measurements are crucial to understanding nanoscale surface properties. Problems arise, however, when measuring soft surfaces such as polymers and biological specimens, because these materials have a more complex viscoelastic response. his research focuses on modeling an AFM dynamic nanoindentation experiment intended to characterize near-surface viscoelastic material parameters. The experiment uses an AFM in dynamic contact mode with a polymer surface to gather frequency dependent amplitude and phase data. A three- dimensional, dynamic viscoelastic model of the AFM and surface interaction is developed and then analytically solved in the linear approximation under appropriate physical assumptions based on the physics of the AFM experimental setup. As an illustrative application, the analytical solution is coupled with experimental data from a polystyrene material to ascertain surface material properties at the nanoscale. Our solution allows the direct calculation of the storage and loss modulus from experimental data.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号