首页> 美国政府科技报告 >Electroluminescence Studies on Longwavelength Indium Arsenide Quantum Dot Microcavities Grown on Gallium Arsenide
【24h】

Electroluminescence Studies on Longwavelength Indium Arsenide Quantum Dot Microcavities Grown on Gallium Arsenide

机译:砷化镓长波长砷化铟量子点微腔的电致发光研究

获取原文

摘要

A comprehensive study of the electroluminescence of four GaAs/AlGaAs microcavity devices with InAs/GaInAs quantum dot active regions emitting near 1.3 micrometer was conducted. The four molecular beam epitaxial grown samples with AlAs oxide aperture confinement layers were fabricated, characterized, and optically modeled. Optical power transmission of the samples was modeled using Matlab and compared with measured transmission data. Resonant cavity light emitting diodes (RCLEDs) and three vertical cavity surface emitting laser (VCSEL) samples were fabricated and electro-optically characterized over a range of injection currents and temperatures. Devices achieved continuous wave room temperature lasing at 1.28 micrometer with an output power of more than 3 mW, a threshold current of 2.3 mA, and a slope efficiency of 10.3 W/A. The characteristic temperature was 49.4 K and the wall plug efficiency at was a maximum of over 36%. The minimum threshold current, 1.25 mA, was at a temperature of -10 deg C. The cavity resonance wavelength was tuned too short for the peak wavelength of the active region gain curve which limited the temperature at which the VCSELs produced lasing to about room temperature.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号