首页> 美国政府科技报告 >Exploratory Data Analytics for Information Discovery in a Network Structure
【24h】

Exploratory Data Analytics for Information Discovery in a Network Structure

机译:用于网络结构中的信息发现的探索性数据分析

获取原文

摘要

This report presents an analytic strategy for visual exploration of multidimensional data. Node position in a network structure is determined by projecting from the high-dimensional data (HDD) space to a low-dimensional latent space. Clustering of node position vectors may result for making inferences. Dimensionality reduction by feature extraction of HDD for visualization is performed using a parametric Student's t-distribution for stochastic neighbor embedding (t-SNE). The resultant t-SNE network of nodes for a Euclidean space can now be examined using visual analytics technology- navigation/interaction within the visualization of the data. Scene content is described using the Extensible 3-D (X3D) graphics application programming interface. The immersive profile of an X3D scene allows for navigation within the data for possible information discovery. Such an approach may provide for a better understanding of data and facilitate analytical reasoning that would otherwise be difficult in an exclusively textual context.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号