首页> 美国政府科技报告 >Maximizing a Second-Degree Polynomial on the Unit Sphere
【24h】

Maximizing a Second-Degree Polynomial on the Unit Sphere

机译:最大化单位球面上的二次多项式

获取原文

摘要

Let A be a hermitian matrix of order n, and b a known vector in C(n). The problem is to determine which vectors make phi(x) = (x-b)(H)A(x-b) a maximum or minimum on the unit sphere U = (x : x(H)x = 1). The problem is reduced to the determination of a finite point set, the spectrum of (A,b). The theory reduces to the usual theory of hermitian forms when b = O.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号