首页> 美国政府科技报告 >PROOF OF THE BASIC INVARIANT IMBEDDING METHOD FOR FREDHOLM INTEGRAL EQUATIONS WITH DISPLACEMENT KERNELS. I,
【24h】

PROOF OF THE BASIC INVARIANT IMBEDDING METHOD FOR FREDHOLM INTEGRAL EQUATIONS WITH DISPLACEMENT KERNELS. I,

机译:具有位移核的FREDHOLm积分方程的基本不变量ImBEDDING方法的证明。一世,

获取原文

摘要

The report discusses a validation for the invariant imbedding method for the case of a Fredholm integral equation in which the forcing term is an exponential function. Application of the invariant imbedding approach has resulted in various transformations for converting integral equations,two-point boundary-value problems,and variational problems into easily computed Cauchy problems. To consolidate these analytic and computational gains and improve understanding of the associated Cauchy problems,this memorandum proves,conversely,that the solution of the Cauchy problem satisfies the original functional equation. AD-690 126, a companion study,completes the validation by offering a proof for the case of a general forcing term g. (Author)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号