Four decades ago, Gomory introduced the corner polyhedron as a relaxation of a mixed integer set in tableau form and Balas introduced intersection cuts for the corner polyhedron. A recent paper of Andersen, Louveaux, Weismantel and Wolsey has generated a renewed interest in the corner polyhedron and intersection cuts. We survey these two approaches and the recent developments in multi-row cuts. We stress the importance of maximal lattice-free convex sets and of the so-called infinite relaxation.
展开▼