首页> 美国政府科技报告 >Rates of Convergence of Newton's Method
【24h】

Rates of Convergence of Newton's Method

机译:牛顿法的收敛速度

获取原文

摘要

Given an operator P in a Banach space X with Lipschitz continuous derivative P primed, it is shown that the existence of 1/(P primed (x + 1)) is necessary and sufficient to predict on the basis of the theorem of L. V. Kantorovic that the Newton sequence x sub (n + 1) = (x sub n) - P(x sub n)/(P primed(s sub n)) will converge to a solution x of the equation P(x) = o quadratically. Some examples are given of convergent Newton sequences for which convergence and the rate of convergence cannot be predicted by the Kantorovic theorem. (Author)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号