首页> 美国政府科技报告 >Optimization of Hybrid-Electric Propulsion Systems for Small Remotely- Piloted Aircraft
【24h】

Optimization of Hybrid-Electric Propulsion Systems for Small Remotely- Piloted Aircraft

机译:小型遥控飞机混合动力推进系统的优化

获取原文

摘要

Small electric-powered remotely-piloted aircraft (RPA) used by today's warfighters for intelligence, surveillance, and reconnaissance (ISR) missions lack desired endurance and loiter times, while the acoustics and thermal signatures of those configured with internal combustion engines (ICE) may make them unpractical for ISR. Outfitting RPA with parallel hybrid-electric propulsion systems (H-EPS) would meet the military's needs by combining the advantages of both systems while reducing fuel consumption and environmental impacts. An analysis tool was created, using constrained static optimization, to size the H-EPS components. Based on the RPA's required power and velocity for the endurance phase, an electric motor (EM) can be designed or selected and matched with a commercial off-the-shelf (COTS) propeller for maximum efficiency. The ICE is then sized for the RPA's required power and velocity for the cruise phase.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号