首页> 美国政府科技报告 >Multi-Sample Cluster Analysis Using Akaike's Information Criterion.
【24h】

Multi-Sample Cluster Analysis Using Akaike's Information Criterion.

机译:使用akaike信息准则进行多样本聚类分析。

获取原文

摘要

Multi-sample cluster analysis, the problem of grouping samples, is studied from an information-theoretic viewpoint via Akaike's Information Criterion (AIC). This criterion combines the maximum value of the likelihood with the number of parameters used in achieving that value. The multi-sample cluster problem is defined, and AIC is developed for this problem. The form of AIC is derived in both univariate and multivariate analysis of variance models. Numerical examples are presented and results are shown to demonstrate the utility of AIC in identifying the best clustering alternatives.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号