首页> 美国政府科技报告 >Consistency of Two Nonparametric Maximum Penalized Likelihood Estimators of the Probability Density Function
【24h】

Consistency of Two Nonparametric Maximum Penalized Likelihood Estimators of the Probability Density Function

机译:概率密度函数的两个非参数最大惩罚似然估计的一致性

获取原文

摘要

This reprint studies the consistency properties of a nonparametric estimator of a density function on the real line, which is known as the first MPLE of Good and Gaskins, and which is obtained by maximizing the likelihood functional multiplied by a roughness penalty with alpha > 0. Keywords; Convergence; and Consistency.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号