首页> 美国政府科技报告 >Consistent Autoregressive Spectral Estimation for Noise-Corrupted Autoregressive Time Series.
【24h】

Consistent Autoregressive Spectral Estimation for Noise-Corrupted Autoregressive Time Series.

机译:噪声破坏自回归时间序列的一致自回归谱估计。

获取原文

摘要

For the case when the observed series consists of the sum of an autoregressive process of known order and white noise the application of autoregressive spectral estimation methods may not be correct. The presence of the additive noise introduces zeros which are not adequately modeled by an autoregressive model. In this report an autoregressive spectral estimator for the noise-corrupted case is developed and shown to be consistent. The high-order Yule-Walker equations are used to estimate the autoregressive parameters from the noise-corrupted observations. A least squares estimate for the variance of the innovations sequence is also developed and shown to be consistent. These consistent estimates for the autoregressive parameters and the innovations variance are used to form the consistent autoregressive spectral estimates. (Author)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号