首页> 外文期刊>IEEE Transactions on Microwave Theory and Techniques >Autoregressive (AR) and autoregressive moving average (ARMA) spectral estimation techniques for faster TLM analysis of microwave structures
【24h】

Autoregressive (AR) and autoregressive moving average (ARMA) spectral estimation techniques for faster TLM analysis of microwave structures

机译:自回归(AR)和自回归移动平均(ARMA)频谱估计技术可更快地对微波结构进行TLM分析

获取原文
获取原文并翻译 | 示例

摘要

Autoregressive (AR) and autoregressive moving average (ARMA) techniques have been successfully implemented in conjunction with the transmission line matrix (TLM) method for efficient time-domain analysis of microwave structures. The AR technique can be used to compute the full time-domain response from a relatively short segment of the early TLM response. It was found that the least-square technique of estimating the AR parameters requires a shorter time record than solving Yule-Walker equations through the Levinson-Durbin algorithm. The ARMA technique can be used to compute the scattering parameters of microwave structures without using the discrete Fourier transform. A recursive least square covariance ladder algorithm has been used for ARMA modeling. Both AR and ARMA models have been validated by applying them to waveguide and suspended substrate stripline filters. With these techniques, the speed of the computationally intensive TLM algorithm can be increased up to five times.
机译:自回归(AR)和自回归移动平均(ARMA)技术已经成功地与传输线矩阵(TLM)方法结合使用,可以有效地对微波结构进行时域分析。 AR技术可用于根据早期TLM响应的相对较短的部分来计算整个时域响应。已发现,与通过Levinson-Durbin算法求解Yule-Walker方程相比,估计AR参数的最小二乘技术需要更短的时间记录。不使用离散傅立叶变换,可以将ARMA技术用于计算微波结构的散射参数。递归最小二乘协方差阶梯算法已用于ARMA建模。 AR和ARMA模型均已通过将其应用于波导和悬浮衬底带状线滤波器进行了验证。使用这些技术,可将计算密集型TLM算法的速度提高到五倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号