首页> 美国政府科技报告 >Dynamic Shortest Path Algorithms for Hypergraphs.
【24h】

Dynamic Shortest Path Algorithms for Hypergraphs.

机译:超图的动态最短路径算法。

获取原文

摘要

A hypergraph is a set V of vertices and a set of non-empty subsets of V , called hyperedges. Unlike graphs hypergraphs can capture higher-order interactions in social and communication networks that go beyond a simple union of pairwise relationships. In this paper, we consider the shortest path problem in hypergraphs. We develop two algorithms for finding and maintaining the shortest hyperpaths in a dynamic network with both weight and topological changes. These two algorithms are the first addressing the fully dynamic shortest path problem in a general hypergraph. They complement each other by partitioning the application space based on the nature of the change dynamics and the type of the hypergraph. We analyze the time complexity of the proposed algorithms and perform simulation experiments for both random geometric hypergraphs and the Enron email data set. The latter illustrates the application of the proposed algorithms in social networks for identifying the most important actor based on the closeness centrality metric.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号