首页> 美国政府科技报告 >Directed Energy Using High-Power Microwave Technology
【24h】

Directed Energy Using High-Power Microwave Technology

机译:利用高功率微波技术定向能源

获取原文

摘要

The Directed Energy Warfare Office (DEWO) and Directed Energy Division at the Naval Surface Warfare Center, Dahlgren Division (NSWCDD), merge past research and data with continuous innovation in the field of high-power microwave(s) (HPM) to address the critical need for nonlethal, nonkinetic weapons. HPM weapons can be described as nonkinetic devices that radiate electromagnetic energy in the radio frequency (RF) or microwave spectrum. They are designed to disrupt, deny, degrade, damage, or destroy targets. In essence, this is achieved when high-power electromagnetic waves propagate through air and interdict targets by traveling through the exterior layers of structures and coupling energy to critical electronic components. Since effectiveness against a wide range of targets is the goal, HPM has become a collective term for various technologies: wave shapes, source frequencies, and the distribution of varying signal bandwidths. It is the objective of HPM research and assessment, therefore, to address targets for which no engagement option currently exists. NSWCDD is working to identify optimal HPM mission platforms and move relevant technologies into the field. More currently, the Directed Energy Division developed a variety of high-power wideband RF systems based on pulsed power and Marx generators. In addition to the extensive work accomplished in HPM and RF source development, NSWCDD contributed substantially to the area of counter-HPM vulnerability assessments. Researchers developed site assessment guides and threat brochures, as well as a number of wideband RF sources, to determine the susceptibility of electronic equipment to high-power RF interference. This latter effort involved assessing and exploiting the weaknesses of specified electronic targets to various HPM and RF threats. Data gleaned from these efforts was then used to support optimized prototypes and system designs employing effects-based design methodology.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号