首页> 美国政府科技报告 >Experimental Study of an Ultra-Mobile Vehicle for Off-Road Transportation. Appendix 2. Dissertation. Kinematic Optimal Design of a Six-Legged Walking Machine
【24h】

Experimental Study of an Ultra-Mobile Vehicle for Off-Road Transportation. Appendix 2. Dissertation. Kinematic Optimal Design of a Six-Legged Walking Machine

机译:超移动车辆越野运输试验研究。附录2.论文。六足步行机的运动学优化设计

获取原文

摘要

Chapter 2 is a review of previous work in the following two areas: The mechanical structure of walking machines and walking gaits. In Chapter 3, the mathematical and graphical background for gait analysis is presented. The gait selection problem in different types of terrain is also discussed. Detailed studies of the major gaits used in level walking are presented. In Chapter 4, gaits for walking on gradients and methods to improve stability are studied. Also, gaits which may be used in crossing three major obstacle types are studied. In Chapter 5, the design of leg geometries based on four-bar linkages is discussed. Major techniques to optimize leg linkages for optimal walking volume are introduced. In Chapter 6, the design of a different leg geometry, based on a pantograph mechanism, is presented. A theoretical background of the motion characteristics of pantographs is given first. In Chapter 7, some other related items of the leg design are discussed. One of these is the foot-ankle system. A few conceptual passive foot-ankle systems are introduced. The second is a numerical method to find the shortest crank for a four-finitely-separated-position-synthesis problem. The shortest crank usually results in a crank rocker, which is the most desirable linkage type in many applications. Finally, in Chapter 8, the research work presented in this dissertation is evaluated and the future development of walking machines is discussed.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号