首页> 美国政府科技报告 >Canonical Correlations and Generalized SVD (Singular Value Decomposition): Applications and New Algorithms
【24h】

Canonical Correlations and Generalized SVD (Singular Value Decomposition): Applications and New Algorithms

机译:典型相关和广义sVD(奇异值分解):应用和新算法

获取原文

摘要

This paper considers canonical correlations and a generalization of the singular value decomposition (SVD) that involves three matrices. The authors show how the two matrix problems are related and how they can be used in important applications such as weighted least squares and optimal prediction. They present two new computational procedures for the problems based on implicit SVD methods for triple matrix products. These algorithms are well suited for parallel implementation. Keyword: Reprints. (KR)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号