首页> 美国政府科技报告 >Smoothing Spatial Data by Estimating Mean Local Variance
【24h】

Smoothing Spatial Data by Estimating Mean Local Variance

机译:通过估计均值局部方差来平滑空间数据

获取原文

摘要

A nearest neighbor nonparametric regression method is used to estimate air pollution levels at other than measured points. The method requires an appropriate smoother. Cross-validation is used to determine the appropriate smoother. An alternative method is introduced to determine an appropriate level of smoothing which involves minimizing mean local variance. Mean local variance is a function of the size of a circular window. It is minimized for two pollutants in Ohio, New York and Florida. The smoother obtained by cross-validation using Ohio's data is compared to that obtained by minimizing mean local variance.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号