首页> 美国政府科技报告 >Content-Addressable Memory Storage by Neural Networks: A General Model and Global Liapunov Method
【24h】

Content-Addressable Memory Storage by Neural Networks: A General Model and Global Liapunov Method

机译:基于神经网络的内容可寻址存储器存储:通用模型和全局Liapunov方法

获取原文

摘要

Many neural network models capable of content-addressable memory are shown to be special cases of the general model and global Liapunov function. These include examples of the additive, brain-state-in-a-box, McCulloch-Pitts, Boltzmann machine, shunting, masking field, bidirectional associative memory, Volterra-Lotka, Gilpin-Ayala, and Eigen-Schuster models. The Cohen-Grossberg model thus defines a general principle for the design of content addressable memory, that is shared by all model exemplars of such a general design constitutes a computational invariant. Such a general model and analytic method defines a computational framework within which specialized model exemplars may be compared to discover which models are best able to explain particular parametric data about brain and behavior, or to solve particular technological problems.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号