首页> 外文期刊>Systems, Man and Cybernetics, IEEE Transactions on >Absolute stability of global pattern formation and parallel memory storage by competitive neural networks
【24h】

Absolute stability of global pattern formation and parallel memory storage by competitive neural networks

机译:竞争性神经网络的全局模式形成和并行存储器存储的绝对稳定性

获取原文
获取原文并翻译 | 示例

摘要

The process whereby input patterns are transformed and stored by competitive cellular networks is considered. This process arises in such diverse subjects as the short-term storage of visual or language patterns by neural networks, pattern formation due to the firing of morphogenetic gradients in developmental biology, control of choice behavior during macromolecular evolution, and the design of stable context-sensitive parallel processors. In addition to systems capable of approaching one of perhaps infinitely many equilibrium points in response to arbitrary input patterns and initial data, one finds in these subjects a wide variety of other behaviors, notably traveling waves, standing waves, resonance, and chaos. The question of what general dynamical constraints cause global approach to equilibria rather than large amplitude waves is therefore of considerable interest. In another terminology, this is the question of whether global pattern formation occurs. A related question is whether the global pattern formation property persists when system parameters slowly change in an unpredictable fashion due to self-organization (development, learning). This is the question of absolute stability of global pattern formation. It is shown that many model systems which exhibit the absolute stability property can be written in the form ${dx_iover dt} = a_i (x_i)left[b_i(x_i)-sum^n_{k = 1} c_{ik} d_k (x_k)right]$ (1) i = 1, 2, …, n, where the matrix C = ‖cik‖ is symmetric and the system as a whole is competitive. Under these circumstances, this system defines a global Liapunov function. The absolute stability of systems with infinite but totally disconnected sets of equilibrium points can then be studied using the LaSalle invariance principle, the theory of several complex variables, and Sard''s theorem. The symmetry of matrix C is important since competitive systems of the form (1) exist wherein C is arbitraril- close to a symmetric matrix but almost all trajectories persistently oscillate, as in the voting paradox. Slowing down the competitive feedback without violating symmetry, as in the systems ${dx_iover dt} = a_i (x_i)left[b_i(x_i)-sum^n_{k = 1} c_{ik} d_k (y_k)right]$ ${dy_iover dt} = e_i (x_i)[f_i(x_i)-y_i],$ also enables sustained oscillations to occur. Our results thus show that the use of fast symmetric competitive feedback is a robust design constraint for guaranteeing absolute stability of global pattern formation.
机译:考虑了通过竞争蜂窝网络来转换和存储输入模式的过程。这个过程出现在各种各样的主题中,例如通过神经网络短期存储视觉或语言模式,由于在发育生物学中触发形态发生梯度而形成的模式,在大分子进化过程中控制选择行为以及设计稳定的环境,敏感的并行处理器。除了能够响应任意输入模式和初始数据而接近无限多个平衡点之一的系统外,在这些主题中还发现了各种各样的其他行为,尤其是行波,驻波,共振和混沌。因此,引起什么普遍动力约束而不是大振幅波引起整体平衡的全局问题。用另一种术语来说,这是是否发生全局模式形成的问题。一个相关的问题是,当系统参数由于自组织(发展,学习)而以不可预测的方式缓慢变化时,全局模式形成属性是否仍然存在。这是全球格局形成的绝对稳定性的问题。结果表明,许多具有绝对稳定性的模型系统都可以写成$ {dx_iover dt} = a_i(x_i)left [b_i(x_i)-sum ^ n_ {k = 1} c_ {ik} d_k( [1] i = 1,2,…,n,其中矩阵C =“ cik”是对称的,整个系统具有竞争性。在这种情况下,该系统定义了全局Liapunov函数。然后可以使用LaSalle不变性原理,几个复变量的理论和Sard定理研究具有无限个但完全断开的平衡点集的系统的绝对稳定性。矩阵C的对称性很重要,因为存在形式(1)的竞争系统,其中C任意对称于对称矩阵,但几乎所有轨迹都持续波动,如投票悖论中那样。在不违反对称性的情况下降低竞争性反馈,例如在系统中$ {dx_iover dt} = a_i(x_i)left [b_i(x_i)-sum ^ n_ {k = 1} c_ {ik} d_k(y_k)right] $ $ {dy_iover dt} = e_i(x_i)[f_i(x_i)-y_i],$还可以使持续振荡发生。因此,我们的结果表明,使用快速对称竞争反馈是保证全局模式形成的绝对稳定性的稳健设计约束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号